(a) In the figure (1) given below, ∆ABC is isosceles with AB = AC = 5 cm and BC = 6 cm. Find
(i) sin C
(ii) tan B
(iii) tan C – cot B.
(b) In the figure (2) given below, ∆ABC is right-angled at B. Given that ∠ACB = θ, side AB = 2 units and side BC = 1 unit, find the value of sin2 θ + tan2 θ.
(c) In the figure (3) given below, AD is perpendicular to BC, BD = 15 cm, sin B = 4/5 and tan C = 1.
(i) Calculate the lengths of AD, AB, DC and AC.
(ii) Show that tan2 B – 1/cos2 B = – 1.
Answer :
(a) ∆ABC is isosceles with AB = AC = 5 cm and BC = 6 cm
Construct AD perpendicular to BC
D is the mid point of BC
So BD = CD
BD = CD = 6/2 = 3 cm
In right angled ∆ABD
AB2 = AD2 + BD2
AD2 = AB2 – BD2
AD2 = 52 – 32
AD2 = 25 – 9 = 16
AD2 = 42
AD = 4 cm
(i) In right angled ∆ACD
sin C = perpendicular/hypotenuse
sin C = AD/AC = 4/5
(ii) In right angled ∆ABD
tan B = perpendicular/base
tan B = AD/BD = 4/3
(iii) In right angled ∆ACD
tan C = perpendicular/base
⇒ tan C = AD/CD = 4/3
In right angled ∆ABD
cot B = base/perpendicular
⇒ cot B = BD/AD = ¾
tan C – cot B = 4/3 – ¾
Taking LCM,
tan C – cot B = (16 – 9)/12 = 7/12
(b) It is given that
∆ABC is right-angled at B
AB = 2 units and BC = 1 unit
In right angled ∆ABC
AC2 = AB2 + BC2
AC2 = 22 + 12
⇒ AC2 = 4 + 1 = 5
AC2 = 5
⇒ AC = √5 units
In right angled ∆ABC
sin θ = perpendicular/hypotenuse
⇒ sin θ = AB/AC = 2/√5
In right angled ∆ABC
tan θ = perpendicular/base
⇒ tan θ = AB/BC = 2/1
sin2 θ + tan2 θ = (2/√5)2 + (2/1)2
= 4/5 + 4/1
Taking LCM
= (4 + 20)/5
= 24/5
= 4 4/5
(c) (i) In ∆ABC
AD is perpendicular to BC
BD = 15 cm
sin B = 4/5
tan C = 1
In ∆ABD
sin B = perpendicular/hypotenuse
⇒ sin B = AD/AB = 4/5
Consider AD = 4x and AB = 5x
In right angled ∆ABD,
AB2 = AD2 + BD2
BD2 = AB2 – AD2
(15)2 = (5x)2 – (4x)2
⇒ 225 = 25x2 – 16x2
225 = 9x2
⇒ x2 = 225/9 = 25
x = √25 = 5
AD = 4 × 5 = 20
AB = 5 × 5 = 25
In right angled ∆ACD
tan C = perpendicular/base
tan C = AD/CD = 1/1
Consider AD = X then CD = x
In right angled ∆ADC
AC2 = AD2 + CD2
AC2 = x2 + x2 …(1)
So the equation becomes
AC2 = 202 + 202
⇒ AC2 = 400 + 400 = 800
AC = √800 = 20√2
Length of AD = 20 cm
Length of AB = 25 cm
Length of DC = 20 cm
Length of AC = 20√2 cm
(ii) In right angled ∆ABD
tan B = perpendicular/base
tan B = AD/BD
Substituting the values
tan B = 20/15 = 4/3
In right angled ∆ABD,
cos B = base/hypotenuse
cos B = BD/AB
Substituting the values
cos B = 15/25 = 3/5
Here,
LHS = tan2 B – 1/cos2 B
= (4/3)2 – 1/(3/5)2
= (4)2/(3)2 – (5)2/(3)2
= 16/9 – 25/9
So we get
= (16 – 25)/9
= -9/9
= – 1
= RHS
Hence, proved.
More Solutions:
- Find the value of cos θ + tan θ.
- If tan = 4/3, find the value of sin θ + cos θ.
- If cosec = √5 and θ is less than 90°.
- Find cos θ + sin θ in terms of p and q.
- Find the value of sec θ + cosec θ.
- Given A is an acute angle and 13 sin A = 5, Evaluate:
- Given A is an acute angle and cosec A = √2
- If AC = 8 cm and BD = 6 cm, find sin ∠OCD.
- Find the value of (cos θ + sin θ)/(cos θ – sin θ).
- Given 5 cos A – 12 sin A = 0.