Also represent its solution on the number line.

Solve: \\ \frac { 2x-3 }{ 4 } \\ \frac { 1 }{ 2 } , x ∈ {0, 1, 2,…,8}

Solution:

\\ \frac { 2x-3 }{ 4 } \\ \frac { 1 }{ 2 }
=> 2x – 3 ≥ \\ \frac { 4 }{ 2 }
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 4 Linear Inequations Ex 4 Q7.1

Solve x – 3 (2 + x) > 2 (3x – 1), x ∈ { – 3, – 2, – 1, 0, 1, 2, 3}. Also represent its solution on the number line.

Solution:

x – 3 (2 + x) > 2 (3x – 1)
=> x – 6 – 3x > 6x – 2
=> x – 3x – 6x > – 2 + 6
=> – 8x > 4
=> x < \\ \frac { -4 }{ 8 } => x < - \frac { 1 }{ 2 }
x ∈ { – 3, – 2, – 1, 0, 1, 2}
.’. Solution set = { – 3, – 2, – 1}
Solution set on Number Line :
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 4 Linear Inequations Ex 4 Q8.1

Leave a Comment