(a)From the figure (i0) given below, calculate all the six t-ratios for both acute………
(b)From the figure (ii) given below, find the values of x and y in terms of t-ratios
Answer:
(a) From right angled triangle ABC,
AC2 = AB2 + BC2
⇒ AB2 = AC2 – BC2
⇒ AB2 = (3)2 – (2)2
⇒ AB2 = 9 – 4
⇒ AB2 = 5
⇒ AB = √5
(i) sin A = perpendicular/ hypotenuse
= BC/AC
= 2/3
(ii) cos A = base/ hypotenuse
= AB/AC
= √5/3
(iii) tan A = perpendicular/ base
= BC/AB
= 2/ √5
(iv) cot A = base/perpendicular
= AB/ BC
= √5/2
(v) sec A = hypotenuse/ base
= AC/AB
= 3/ √5
(vi) cosec A = hypotenuse/perpendicular
= AC/BC
= 3/2
(b) From right angled triangle ABC,
∠BAC = θ
cotθ = base/ perpendicular
= AB/ BC
= x/ 10
x = 10 cotθ
Also,
cosecθ = hypotenuse/ perpendicular
= AC/ BC
= y/ 10
y = 10 cosec θ
Hence, x = 10 cot θ and y = 10 cosec θ.
More Solutions:
- Find the value of sin2 θ + cosec2 θ.
- Find the length of BD.
- Find the values of 7 sin 30° cos 60°
- Find the values of (sin245° + cos245°)/tan260°
- Find the values of (sin30°/cos245°) – 3tan30° + 5cos90°
- Prove That. cos2 30° + sin 30° + tan2 45° = 2 ¼
- If x = 30°, verify that tan 2x = 2tanx/ (1- tan2 x).
- Find the values of: Trigonometric Ratios
- If θ = 30°, verify that
- Find the ratio 2 sin 0: sin 2 0.