(a) In the figure (i) given below, chord AB and diameter CD of a circle with centre O meet at P. PT is tangent to the circle at T. If AP = 16 cm, AB = 12 cm and DP = 2 cm, find the length of PT and the radius of the circle
(b) In the figure (ii) given below, chord AB and diameter CD of a circle meet at P. If AB = 8 cm, BP = 6 cm and PD = 4 cm, find the radius of the circle. Also, find the length of the tangent drawn from P to the circle.
Solution:
More Solutions:
- Draw an equilateral triangle of side 5 cm and draw its inscribed circle.
- Triangle ABC with BC = 6.4 cm, CA = 5.8 cm and ∠ ABC = 60°
- Construct a triangle ABC in which BC = 4 cm, ∠ACB = 45°.
- Construct a circle circumscribing the hexagon.
- Draw a circle of radius 3 cm. Mark its centre as C
- Construct a triangle ABC having given c = 6 cm, b = 1 cm and ∠A = 30°.