(i) cos 65°/sin 25° + cos 32°/sin 58° – sin 28° sec 62° + cosec2 30°
(ii) sec 29°/ cosec 61° + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3 (sin2 38° + sin2 52°).
Answer :
(i) cos 65°/sin 25° + cos 32°/sin 58° – sin 28° sec 62° + cosec2 30°
= cos 65°/sin (90° – 65°) + cos 32°/sin (90°–32°) – sin 28° sec (90°–28°) + cosec2 30°
= cos 65°/cos 65° + cos 32°/cos 32° – sin 28° cosec 28° + cosec2 30°
cosec 30° = 2
= 1 + 1 – 1 + 4
= 5
(ii) sec 29°/cosec 61° + 2 cot8° cot17° cot45° cot73° cot82° – 3 (sin2 38° + sin2 52°)
= sec 29°/cosec (90° – 29°) + 2 cot8° cot17° cot45° cot (90°–17°) cot (90°–8°) – 3 [sin238° + sin2 (90°–38°)]
= sec 29°/sec 29° + (2 cot8° cot17° × 1 × tan17° tan8°) – 3 (sin2 38° + cos2 38°)
= 1 + (2 cot 8° tan 8° cot 17° tan 17° × 1) – (3 × 1)
cosec (90° – θ) = sec θ
⇒ cot (90° – θ) = tan θ
⇒ sin2 θ + cos2 θ = 1
= 1 + (2 × 1 × 1 × 1) – 3
= 1 + 2 – 3
= 0
More Solutions:
- Prove the following: (sin A + cos A)2 + (sin A – cos A)2 = 2
- Simplify
- Find the value of sin2 θ + cosec2 θ.
- Prove that x2 + y2 = a2 + b2.
- Calculate all the six t-ratios for both acute………
- Find the values of: sin ∠ABC
- Find tanθ – cotθ in terms of p and q.
- Given 4 sin θ = 3 cos θ, find the values of:
- Prove that 3 sin 0 – 4 sin3 0 = 1.
- If (sec θ – tan θ)/ (sec θ + tan θ) = ¼, find sin θ.