(i) cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30° = 0
(ii) cos 80°/sin 10° + cos 59° cosec 31° = 2.
Answer :
(i) cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30° = 0
LHS = cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30°
= cos 70°/sin (90° – 70°) + cos 59°/sin (90° – 59°) – 8 sin2 30°
sin 30° = ½
= cos 70°/cos 70° + cos 59°/ cos 59° – 8 (1/2)2
= 1 + 1 – (8 × ¼)
= 2 – 2
= 0
= RHS
(ii) cos 80°/sin 10° + cos 59° cosec 31° = 2
LHS = cos 80°/sin 10° + cos 59° cosec 31°
= cos 80°/sin (90° – 80°) + cos 59°/ sin 31°
= cos 80°/ cos 80° + cos 59°/ sin (90° – 59°)
= 1 + cos 59°/ cos 59°
= 1 + 1
= 2
= RHS
More Solutions:
- Prove the following: (sin A + cos A)2 + (sin A – cos A)2 = 2
- Simplify
- Find the value of sin2 θ + cosec2 θ.
- Prove that x2 + y2 = a2 + b2.
- Calculate all the six t-ratios for both acute………
- Find the values of: sin ∠ABC
- Find tanθ – cotθ in terms of p and q.
- Given 4 sin θ = 3 cos θ, find the values of:
- Prove that 3 sin 0 – 4 sin3 0 = 1.
- If (sec θ – tan θ)/ (sec θ + tan θ) = ¼, find sin θ.