(i) cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°
(ii) sec 17°/cosec 73° + tan 68°/cot 22° + cos2 44° + cos2 46°.
Answer :
(i) cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°
= cos2 26° + cos (90° – 26°) sin 26° + tan 36°/cot (90° – 36°)
cos (90° – θ) = sin θ
cot (90° – θ) = tan θ
sin2 θ + cos2 θ = 1
= cos2 26° + sin2 26° + tan 36°/tan 36°
= 1 + 1
= 2
(ii) sec 17°/cosec 73° + tan 68°/cot 22° + cos2 44° + cos2 46°
= sec (90° – 73°)/cosec 73° + tan (90° – 22°)/cot 22° + cos2 (90° – 46°) + cos2 46°
= cosec 73°/cosec 73° + cot 22°/cot 22° + sin2 46° + cos2 46°
sin2 θ + cos2 θ = 1
= 1 + 1 + 1
= 3
More Solutions:
- cos 65°/sin 25° + cos 32°/sin 5
- Express each of the following in terms.
- sin2 28° – cos2 62° = 0
- sin 63° cos 27° + cos 63° sin 27° = 1
- sec 70° sin 20° – cos 20° cosec 70° = 0
- cot 54°/tan 36° + tan 20°/cot 70° – 2 = 0
- cos 80°/sin 10° + cos 59° cosec 31° = 2.
- Without using trigonometrical tables, evaluate:
- Prove the following: cos θ sin (90° – θ) + sin θ cos (90° – θ) = 1
- Simplify the following: It can be written as