(i) cot 40°/tan 50° – ½ (cos 35°/sin 55°)
(ii) (sin 49°/cos 41°)2 + (cos 41°/sin 49°)2
(iii) sin 72°/cos 18° – sec 32°/cosec 58°
(iv) cos 75°/sin 15° + sin 12°/cos 78°– cos 18°/sin 72°
(v) sin 25°/sec 65° + cos 25°/ cosec 65°.
Answer :
(i) cot 40°/tan 50° – ½ (cos 35°/sin 55°)
It can be written as

=1/2
(ii) (sin 49°/cos 41°)2 + (cos 41°/sin 49°)2

= 12 + 12
= 1 + 1
= 2
(iii) sin 72°/cos 18° – sec 32°/cosec 58°

= 1 – 1
= 0
(iv) cos 75°/sin 15° + sin 12°/ cos 78° – cos 18°/sin 72°

= 1 + 1 – 1
= 1
(v) sin 25°/sec 65° + cos 25°/ cosec 65°
= (sin 25° × cos 65°) + (cos 25° × sin 65°)
= [sin 25° × cos (90°– 25°)] + [cos 25° × sin (90° – 25°)]
= (sin 25°× sin 25°) + (cos 25° × cos 25°)
= sin2 25° + cos2 25°
= 1
More Solutions:
- cos 65°/sin 25° + cos 32°/sin 5
- Express each of the following in terms.
- sin2 28° – cos2 62° = 0
- sin 63° cos 27° + cos 63° sin 27° = 1
- sec 70° sin 20° – cos 20° cosec 70° = 0
- cot 54°/tan 36° + tan 20°/cot 70° – 2 = 0
- cos 80°/sin 10° + cos 59° cosec 31° = 2.
- Without using trigonometrical tables, evaluate:
- Prove the following: cos θ sin (90° – θ) + sin θ cos (90° – θ) = 1
- Simplify the following: It can be written as