**Factories**** the following :**

(i) 8xy^{3} + 12x^{2}y^{2}

(ii) 15 ax^{3} – 9ax^{2}

**Sol: **(i) 8xy^{3} + 12x^{2}y^{2}

Take out common in both terms,

Then, 4xy^{2} (2y + 3x)

Therefore, HCF of 8xy^{3} and 12x^{2}y^{2} is 4xy^{2}.

##### (ii) 15 ax^{3} – 9ax^{2}

Take out common in both terms,

Then, 3ax^{2} (5x – 3)

Therefore, HCF of 15 ax^{3} and 9ax^{2} is 3ax^{2}.

**More Solutions:**

- Factorise a2b – ab2 + 3a – 3b
- Factorise 6xy2 – 3xy – 10y + 5
- Factorise 1 – a – b + ab
- Factorise x2 + xy (1 + y) + y3
- Factorise ab2 + (a – 1)b – 1
- Factorise 5ph – 10qk + 2rph – 4qrk
- Factorise ab(x2 + y2) – xy(a2 + b2)
- Factorise a3 + ab(1 – 2a) – 2b2
- Factorise a2b + ab2 –abc – b2c + axy + bxy
- Factorise ax2 – bx2 + ay2 – by2 + az2 – bz2
- Factorise x – 1 – (x – 1)2 + ax – a