(i) 10a(2p + q)3 – 15b (2p + q)2 + 35 (2p + q),
(ii) x(x2 + y2 – z2) + y(-x2 – y2 + z2) – z (x2 + y – z2)
Sol: (i) 10a(2p + q)3 – 15b (2p + q)2 + 35 (2p + q)
Take out common in all terms,
Then, 5(2p + q) [2a (2p + q)2 – 3b (2p + q) + 7]
Therefore, HCF of 10a(2p + q)3, 15b (2p + q)2 and 35 (2p + q) is 5(2p + q).
(ii) x(x2 + y2 – z2) + y(-x2 – y2 + z2) – z (x2 + y – z2)
x(x2 + y2 – z2) + y(-x2 – y2 + z2) – z (x2 + y – z2)
Take out common in all terms,
Then, (x2 + y2 – z2) [x – y – z]
Therefore, HCF of x(x2 + y2 – z2), y(-x2 – y2 + z2) and z (x2 + y – z2) is (x2 + y2 – z2)
More Solutions:
- Factorise a2b – ab2 + 3a – 3b
- Factorise 6xy2 – 3xy – 10y + 5
- Factorise 1 – a – b + ab
- Factorise x2 + xy (1 + y) + y3
- Factorise ab2 + (a – 1)b – 1
- Factorise 5ph – 10qk + 2rph – 4qrk
- Factorise ab(x2 + y2) – xy(a2 + b2)
- Factorise a3 + ab(1 – 2a) – 2b2
- Factorise a2b + ab2 –abc – b2c + axy + bxy
- Factorise ax2 – bx2 + ay2 – by2 + az2 – bz2
- Factorise x – 1 – (x – 1)2 + ax – a