(i) 15(2x – 3)3 – 10(2x – 3)
(ii) a(b – c) (b + c) – d(c – b)
Answer :
(i) 15(2x – 3)3 – 10(2x – 3)
Take out common in both terms,
Then, 5(2x – 3) [3(2x – 3)2 – 2]
(ii) a(b – c) (b + c) – d(c – b)
a(b – c) (b + c) – d(c – b)
Above terms can be written as,
a(b – c) (b + c) + d(b – c)
Take out common in both terms,
(b – c) [a(b + c) + d]
(b – c) (ab + ac + d)
More Solutions:
- Factorise 21×2 – 59xy + 40y2
- Factorise x2y2 – xy – 72
- Factorise (3a – 2b)2 + 3(3a – 2b) – 10
- Factorise (x2 – 3x) (x2 – 3x + 7) + 10
- Factorise (x2 – x) (4×2 – 4x – 5) – 6
- Factorise x4 + 9x2y2 + 81y4
- Factorise (8/27)x3 – (1/8)y3
- Factorise x6 + 63×3 – 64
- Factorise x3 + x2 – (1/x2) + (1/x3)
- Factorise (x + 1)6 – (x – 1)6
- Find the value of a4 + a2b2 + b4.