(i) 15a (2p – 3q) – 10b (2p – 3q)
(ii) 3a(x2 + y2) + 6b (x2 + y2)
Sol: (i) 15a (2p – 3q) – 10b (2p – 3q)
Take out common in both terms,
Then, 5(2p – 3q) [3a – 2b]
Therefore, HCF of 15a (2p – 3q) and 10b (2p – 3q) is 5(2p – 3q).
(ii) 3a(x2 + y2) + 6b (x2 + y2)
3a(x2 + y2) + 6b (x2 + y2)
Take out common in all terms,
Then, 3(x2 + y2) (a + 2b)
Therefore, HCF of 3a(x2 + y2) and 6b (x2 + y2) is 3(x2 + y2).
More Solutions:
- Factorise a2b – ab2 + 3a – 3b
- Factorise 6xy2 – 3xy – 10y + 5
- Factorise 1 – a – b + ab
- Factorise x2 + xy (1 + y) + y3
- Factorise ab2 + (a – 1)b – 1
- Factorise 5ph – 10qk + 2rph – 4qrk
- Factorise ab(x2 + y2) – xy(a2 + b2)
- Factorise a3 + ab(1 – 2a) – 2b2
- Factorise a2b + ab2 –abc – b2c + axy + bxy
- Factorise ax2 – bx2 + ay2 – by2 + az2 – bz2
- Factorise x – 1 – (x – 1)2 + ax – a