#### 2a^{3} + 16b^{3} – 5a – 10b

Above terms can be written as,

2(a^{3 }+ 8b^{3}) – 5(a + 2b)

2(a^{3} + (2b)^{3}) – 5(a + 2b)

We know that, a^{3} + b^{3} = (a + b) (a^{2} – ab + b^{2})

2[(a + 2b) (a^{2} – 2ab + 4b^{2})] – 5(a + 2b)

(a + 2b) (2a^{2} – 4ab + 8b^{2} – 5)

##### (ii) a^{3} – (1/a^{3}) – 2a + 2/a

(a^{3} – (1/a)^{3}) – 2a + 2/a

We know that, a^{3} – b^{3} = (a – b) (a^{2} + ab + b^{2})

[(a – 1/a) – (a^{2} + (a × 1/a) + (1/a)^{2}] – 2(a – 1/a)

(a – 1/a) (a^{2} + 1 + 1/a^{2}) – 2(a – 1/a)

(a – 1/a) (a^{2} + 1 + 1/a^{2} – 2)

(a – 1/a) (a^{2} + (1/a^{2}) – 1)

**More Solutions:**

- Factorisation of p4 – 81² is
- Factorisation of x²- 4x-12 is
- The factorization of 4x² 8xr +3 is
- Factorisation of r2 – 4xy + 4y2 is
- Factorise 15(2x – 3)3 – 10(2x – 3)
- Factorise 2a2x – bx + 2a2 – b
- Factorise (x2 – y2)z + (y2 – z2)x
- Factorise b(c -d)2 + a(d – c) + 3c – 3d
- Factorise x(x + z) – y (y + z)
- Factorise 9×2 + 12x + 4 – 16y2