Factorise 9 – x2 + 2xy – y2

(i) 9 – x+ 2xy – y2

(ii) 9x4 – (x2 + 2x + 1)

Answer :

(i) 9 – x+ 2xy – y2

9 – x2 + 2xy – y2

Above terms can be written as,

9 – x2 + xy + xy – y2

Now,

9 – x2 + xy + 3x – 3x + 3y – 3y + xy – y2

Rearranging the above terms, we get,

9 – 3x + 3y + 3x – x2 + xy + xy – 3y – y2

Take out common in all terms,

3(3 – x + y) + x(3 – x + y) + y (-3 – y + x)

3(3 – x + y) + x(3 – x + y) – y(3 – x + y)

(3 – x + y) (3 + x – y)

(ii) 9x4 – (x2 + 2x + 1)

9x4 – (x2 + 2x + 1)

Above terms can be written as,

(3x2)2 – (x + 1)2 … [because (a + b)2 = a2 + 2ab + b2]

We know that, a2 – b2 = (a + b) (a – b)

So, (3x2 + x + 1) (3x2 – x – 1)

More Solutions:

Leave a Comment