(i) 9x2 + 12x + 4 – 16y2
(ii) x4 + 3x2 + 4
Answer :
(i) 9x2 + 12x + 4 – 16y2
Above terms can be written as,
(3x)2 + (2 × 3x × 2) + 22 – 16y2
Then, (3x + 2)2 – (4y)2
(3x + 2 + 4y) (3x + 2 – 4y)
(ii) x4 + 3x2 + 4
x4 + 3x2 + 4
Above terms can be written as,
(x2)2 + 3(x2) + 4
(x2)2 + (2)2 + 4x2 – x2
(x2 + 2)2 – (x2)
We know that, (a2 – b2) = (a + b) (a – b)
(x2 + 2 + x) (x2 + 2 – x)
(x2 + x + 2) (x2 – x + 2)
More Solutions:
- Factorise 21×2 – 59xy + 40y2
- Factorise x2y2 – xy – 72
- Factorise (3a – 2b)2 + 3(3a – 2b) – 10
- Factorise (x2 – 3x) (x2 – 3x + 7) + 10
- Factorise (x2 – x) (4×2 – 4x – 5) – 6
- Factorise x4 + 9x2y2 + 81y4
- Factorise (8/27)x3 – (1/8)y3
- Factorise x6 + 63×3 – 64
- Factorise x3 + x2 – (1/x2) + (1/x3)
- Factorise (x + 1)6 – (x – 1)6
- Find the value of a4 + a2b2 + b4.