Factorise a6 – b6

(i) a6 – b6

Above terms can be written as,

(a2)3 – (b2)3

We know that, a3 – b3 = (a – b) (a2 + ab + b2)

So, a = a2, b = b2

(a2 – b2) ((a2)2) + a2b2 + (b2)2)

(a2 – b2) (a4 + a2b2 + b4)

(ii) x6 – 1

Above terms can be written as,

(x2)3 – 13

We know that, a3 – b3 = (a – b) (a2 + ab + b2)

So, a = x2, b = 1

(x2 – 1) ((x2)2 + (x2 × 1) + 12)

(x2 – 1) (x4 + x2 + 1)

More Solutions:

Leave a Comment