#### (i) a^{6} – b^{6}

Above terms can be written as,

(a^{2})^{3} – (b^{2})^{3}

We know that, a^{3} – b^{3} = (a – b) (a^{2} + ab + b^{2})

So, a = a^{2}, b = b^{2}

(a^{2} – b^{2}) ((a^{2})^{2}) + a^{2}b^{2} + (b^{2})^{2})

(a^{2} – b^{2}) (a^{4} + a^{2}b^{2} + b^{4})

##### (ii) x^{6} – 1

Above terms can be written as,

(x^{2})^{3} – 1^{3}

We know that, a^{3} – b^{3} = (a – b) (a^{2} + ab + b^{2})

So, a = x^{2}, b = 1

(x^{2} – 1) ((x^{2})^{2} + (x^{2} × 1) + 1^{2})

(x^{2} – 1) (x^{4} + x^{2} + 1)

**More Solutions:**

- Factorisation of p4 – 81² is
- Factorisation of x²- 4x-12 is
- The factorization of 4x² 8xr +3 is
- Factorisation of r2 – 4xy + 4y2 is
- Factorise 15(2x – 3)3 – 10(2x – 3)
- Factorise 2a2x – bx + 2a2 – b
- Factorise (x2 – y2)z + (y2 – z2)x
- Factorise b(c -d)2 + a(d – c) + 3c – 3d
- Factorise x(x + z) – y (y + z)
- Factorise 9×2 + 12x + 4 – 16y2