Factorise a(a – 2) – b(b – 2)

(i) a(a – 2) – b(b – 2)

(ii) a(a – 1) – b(b – 1)

Answer :

(i) a(a – 2) – b(b – 2)

Above question can be written as,

a2 – 2a – b2 – 2b

Rearranging the above terms, we get,

a2 – b2 – 2a – 2b

We know that, a2 – b2 = (a + b) (a – b)

[(a + b)(a – b)] – 2(a – b)

Take out common in all terms,

(a – b) (a + b – 2)

(ii) a(a – 1) – b(b – 1)

a(a – 1) – b(b – 1)

Above question can be written as,

a2 – a – b2 + b

Rearranging the above terms, we get,

a2 – b2 – a + b

We know that, a2 – b2 = (a + b) (a – b)

[(a + b) (a – b)] – 1 (a – b)

Take out common in all terms,

(a – b) (a + b – 1)

More Solutions:

Leave a Comment