**b(c -d)**^{2} + a(d – c) + 3c – 3d

^{2}+ a(d – c) + 3c – 3d

**Answer :**

**(i) b(c -d)**^{2} + a(d – c) + 3c – 3d

^{2}+ a(d – c) + 3c – 3d

Above terms can be written as,

b(c – d)^{2} – a(c – d) + 3c – 3d

b(c – d)^{2} – a(c – d) + 3(c – d)

Take out common in both terms,

(c – d) [b(c – d) – a + 3]

(c – d) (bc – bd – a + 3)

**(ii) x**^{3} – x^{2} – xy + x + y – 1

^{3}– x

^{2}– xy + x + y – 1

x^{3} – x^{2} – xy + x + y – 1

Rearrange the above terms we get,

x^{3} – x^{2} – xy + y + x – 1

Take out common in both terms,

x^{2}(x – 1) – y(x – 1) + 1(x – 1)

(x – 1) (x^{2} – y + 1)

**More Solutions:**

- Factorise 21×2 – 59xy + 40y2
- Factorise x2y2 – xy – 72
- Factorise (3a – 2b)2 + 3(3a – 2b) – 10
- Factorise (x2 – 3x) (x2 – 3x + 7) + 10
- Factorise (x2 – x) (4×2 – 4x – 5) – 6
- Factorise x4 + 9x2y2 + 81y4
- Factorise (8/27)x3 – (1/8)y3
- Factorise x6 + 63×3 – 64
- Factorise x3 + x2 – (1/x2) + (1/x3)
- Factorise (x + 1)6 – (x – 1)6
- Find the value of a4 + a2b2 + b4.