(i) (x2 – y2)z + (y2 – z2)x
(ii) 5a4 – 5a3 + 30a2 – 30a
Answer :
(i) (x2 – y2)z + (y2 – z2)x
Above terms can be written as,
zx2 – zy2 + xy2 – xz2
Rearrange the above terms we get,
zx2 – xz2 + xy2 – zy2
Take out common in both terms,
zx(x – z) + y2(x – z)
(x – z) (zx + y2)
(ii) 5a4 – 5a3 + 30a2 – 30a
5a4 – 5a3 + 30a2 – 30a
Take out common in both terms,
5a(a3 – a2 + 6a – 6)
5a[a2(a – 1) + 6(a – 1)]
5a(a – 1) (a2 + 6)
More Solutions:
- Factorise 21×2 – 59xy + 40y2
- Factorise x2y2 – xy – 72
- Factorise (3a – 2b)2 + 3(3a – 2b) – 10
- Factorise (x2 – 3x) (x2 – 3x + 7) + 10
- Factorise (x2 – x) (4×2 – 4x – 5) – 6
- Factorise x4 + 9x2y2 + 81y4
- Factorise (8/27)x3 – (1/8)y3
- Factorise x6 + 63×3 – 64
- Factorise x3 + x2 – (1/x2) + (1/x3)
- Factorise (x + 1)6 – (x – 1)6
- Find the value of a4 + a2b2 + b4.