Factorise x6 + 63×3 – 64

x6 + 63x3 – 64

x6 + 63x3 – 64

Above terms can be written as,

x6 + 64x3 – x3 – 64

Take out common in all terms,

x3 (x3 + 64) – 1(x3 + 64)

(x3 + 64) (x3 – 1)

(x3 + 43) (x3 – 13)

We know that, a3 – b3 = (a – b) (a2 + ab + b2) and a3 + b3 = (a + b) (a2 – ab + b2)

So, (x + 4) [x2 – 4x + 42] (x – 1) [x2 + x + 12]

(x + 4) (x2 – 4x + 16) (x – 1) (x2 + x + 1)

Leave a Comment