If 3 tan2 θ – 1 = 0, find cos 2θ, given that θ is acute.
Answer :
3 tan2 θ – 1 = 0
3 tan2 θ = 1
⇒ tan2 θ = 1/3
⇒ tan θ = 1/√3 [θ is acute so tan θ is positive]
θ = 30°
cos 2θ = cos 2 × 30°
= cos 60° = ½
More Solutions:
- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°