Given sin θ = p/q, find cos θ + sin θ in terms of p and q.
Answer :
Given that sin θ = p/q
AB/AC = p/q
Let AB = px
And then AC = qx
In right angled triangle ABC
AC2 = AB2 + BC2
⇒ BC2 = AC2 – AB2
⇒ BC2 = q2x2 – p2x2
⇒ BC2 = (q2 – p2)x2
⇒ BC = √( q2 – p2)x
In right angled triangle ABC,
cos θ = base/hypotenuse
= BC/AC
= √( q2 – p2)x/qx
= √( q2 – p2)/q
Now,
Sin θ + cos θ = p/q + √(q2–p2)/q
= [p + √(q2–p2)]/q
More Solutions:
- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure