Find cos θ + sin θ in terms of p and q.

Given sin θ = p/q, find cos θ + sin θ in terms of p and q.

Answer :

Given that sin θ = p/q

Trigonometric Ratios Class 9 ICSE ML Aggarwal img 17

AB/AC = p/q

Let AB = px

And then AC = qx

In right angled triangle ABC

AC2 = AB2 + BC2

⇒ BC2 = AC2 – AB2

⇒ BC2 = q2x2 – p2x2

⇒ BC2 = (q2 – p2)x2

⇒ BC = √( q2 – p2)x

In right angled triangle ABC,

cos θ = base/hypotenuse

= BC/AC

= √( q2 – p2)x/qx

= √( q2 – p2)/q

Now,

Sin θ + cos θ = p/q + √(q2–p2)/q

= [p + √(q2–p2)]/q

More Solutions:

Leave a Comment