Given that tan θ = 5/12 and θ is an acute angle, find sin θ and cos θ.
Answer :
Consider ∆ ABC be right angled at B and ∠ACB = θ
tan θ = 5/12
AB/BC = 5/12
Consider AB = 5x and BC = 12x
AC2 = AB2 + BC2
AC2 = (5x)2 + (12x)2
AC2 = 25x2 + 144x2 = 169x2
AC2 = (13x)2
⇒ AC = 13x
In right angled ∆ ABC
sin θ = perpendicular/hypotenuse
sin θ = AB/AC = 5x/13x = 5/13
In right angled ∆ ABC
cos θ = base/hypotenuse
So we get
cos θ = BC/AC
cos θ = 12x/13x
= 12/13
More Solutions:
- Find the value of cos θ + tan θ.
- If tan = 4/3, find the value of sin θ + cos θ.
- If cosec = √5 and θ is less than 90°.
- Find cos θ + sin θ in terms of p and q.
- Find the value of sec θ + cosec θ.
- Given A is an acute angle and 13 sin A = 5, Evaluate:
- Given A is an acute angle and cosec A = √2
- If AC = 8 cm and BD = 6 cm, find sin ∠OCD.
- Find the value of (cos θ + sin θ)/(cos θ – sin θ).
- Given 5 cos A – 12 sin A = 0.