If q cosθ = p, find tanθ – cotθ in terms of p and q.
Answer :
Consider ABC as a triangle right angled at B and ∠ACB = θ
q cos θ = p
cos θ = BC/AC = p/q
Take BC = px then AC = qx
In right angled ∆ABC
AC2 = AB2 + BC2
AB2 = AC2 – BC2
AB2 = (qx)2 – (px)2
⇒ AB2 = q2x2 – p2x2
AB2 = (q2 – p2)x2
AB = √(q2 – p2) x2
⇒ AB = (√q2 – p2)x
In right angled ∆ABC
tan θ = perpendicular/base
tan θ = AB/BC = [(√q2 – p2)x]/px
⇒ tan θ = (√q2 – p2)/p
In right angled ∆ABC
cot θ = base/perpendicular
cot θ = BC/AB = px/[(√q2 – p2)x]
⇒ cot [(√q2 – p2)x] = p/(√q2 – p2)
More Solutions:
- Find the value of sin2 θ + cosec2 θ.
- Find the length of BD.
- Find the values of 7 sin 30° cos 60°
- Find the values of (sin245° + cos245°)/tan260°
- Find the values of (sin30°/cos245°) – 3tan30° + 5cos90°
- Prove That. cos2 30° + sin 30° + tan2 45° = 2 ¼
- If x = 30°, verify that tan 2x = 2tanx/ (1- tan2 x).
- Find the values of: Trigonometric Ratios
- If θ = 30°, verify that
- Find the ratio 2 sin 0: sin 2 0.