Find the expansions of the following :
(i) (2x + 3y + 5) (2x + 3y – 5)
(ii) (6 – 4a -7b)2
(iii) (7 – 3xy)3
(iv) (x + y + 2)3
Answer :
(i) (2x + 3y + 5) (2x + 3y – 5)
Let us simplify the expression, we get
(2x + 3y + 5) (2x + 3y – 5) = [(2x + 3y) + 5] [(2x – 3y) – 5]
By using the formula, (a)2 – (b)2 = [(a + b) (a – b)]
= (2x + 3y)2 – (5)2
= (2x)2 + (3y) 2 + 2 × 2x × 3y – 5 × 5
= 4x2 + 9y2 + 12xy – 25
(ii) (6 – 4a – 7 b)2
Let us simplify the expression, we get
(6 – 4a – 7 b)2 = [ 6 + (- 4a) + (-7b)]2
= (6)2 + (- 4a)2 + (- 7b)2 + 2 (6) (- 4a) + 2 (- 4a) (-7b) + 2 (-7b) (6)
= 36 + 16a2 + 49b2 – 48a + 56ab – 84b
(iii) (7 – 3xy)3
Let us simplify the expression
By using the formula, we get
(7 – 3xy)3 = (7)3 – (3xy)3 – 3 (7) (3xy) (7 – 3xy)
= 343 – 27x3y3 – 63xy (7 – 3xy)
= 343 – 27x3y3 – 441xy + 189x2y2
(iv) (x + y + 2)3
Let us simplify the expression
By using the formula, we get
(x + y + 2 )3 = [(x + y) + 2]3
= (x + y)3 + (2)3 + 3 (x + y) (2) (x + y + 2)
= x3 + y3 + 3x2y + 3xy2 + 8 + 6 (x + y) [(x + y) + 2]
= x3 + y3 + 3x2y + 3xy2 + 8 + 6 (x + y)2 +12(x + y)
= x3 + y3 + 3x2y + 3xy2 + 8 + 6 (x2 + y2 + 2xy) + 12x + 12y = x3 + y3 + 3x2y + 3xy2 + 8 + 6x2 + 6y2 + 12xy + 12x + 12y
= x3 + y3 + 3x2y + 3xy2 + 8 + 6x2 + 6y2 + 12x + 12y + 12xy
More Solutions:
- Find the value of 8×3 – 27y3 + 90xy + 125.
- If a2 – 1/a2 = 5, evaluate a4 + 1/a4
- Find the relation between p and q.
- Find the value of 2a3 + 2/a3
- If x = 1/(4 – x), find the value of
- Find the value of ¼ (x3 – 1/x3)
- Find the value of x3 – 1/x3
- Find the value of x3 – 1/x3
- Find the sum of their squares.
- If a – b = 7 and a3 – b3 = 133, find:
- Find the coefficient of x2 expansion of