If θ is an acute angle and sin θ = cos θ, find the value of θ and hence, find the value of 2 tan2 θ + sin2 θ – 1.
Answer :
sin θ = cos θ
sin θ/cos θ = 1
tan θ = 1
tan 45° = 1
tan θ = tan 45°
θ = 45°
2 tan2 θ + sin2 θ – 1 = 2 tan2 45° + sin2 45° – 1
= 2 (1)2 + (1/√2)2 – 1
= (2×1×1) + ½ – 1
= 2 + ½ – 1
= 5/2 – 1
= (5 – 2)/2
= 3/2
Hence, 2 tan2 θ + sin2 θ – 1 = 3/2.
More Solutions:
- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°