**If θ is an acute angle and sin θ = cos θ, find the value of θ and hence, find the value of 2 tan**^{2} θ + sin^{2} θ – 1.

^{2}θ + sin

^{2}θ – 1.

**Answer :**

sin θ = cos θ

sin θ/cos θ = 1

tan θ = 1

tan 45° = 1

tan θ = tan 45°

θ = 45°

2 tan^{2} θ + sin^{2} θ – 1 = 2 tan^{2} 45° + sin^{2} 45° – 1

= 2 (1)^{2} + (1/√2)^{2} – 1

= (2×1×1) + ½ – 1

= 2 + ½ – 1

= 5/2 – 1

= (5 – 2)/2

= 3/2

Hence, 2 tan^{2} θ + sin^{2} θ – 1 = 3/2.

**More Solutions:**

- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°