If (a2 + 1)/a = 4, find the value of 2a3 + 2/a3
Answer :
It is given that,
(a2 + 1)/a = 4
a2/a + 1/a = 4
a + 1/a = 4
So by multiplying the expression by 2a, we get
2a3 + 2/a3 = 2[a3 + 1/a3]
= 2 [(a + 1/a)3 – 3 (a) (1/a) (a + 1/a)]
= 2 [(4)3 – 3(4)]
= 2 [64 – 12]
= 2 (52)
= 104
More Solutions:
- Factories the following :
- Factorise 21py2 – 56py
- Factorise 2πr2 – 4πr
- Factorise 25abc2 – 15a2b2c
- Factorise 8×3 – 6×2 + 10x
- Factorise 18p2q2 – 24pq2 + 30p2q
- Factorise 15a (2p – 3q) – 10b (2p – 3q)
- Factorise 6(x + 2y)3 + 8(x +2y)2
- Factorise 10a(2p + q)3 – 15b (2p + q)2 + 35 (2p + q)
- Factorise x2 + xy – x – y
- Factorise 5xy + 7y – 5y2 – 7x