If 2x = 3y – 5, then find the value of 8x3 – 27y3 + 90xy + 125.
Answer :
Given:
2x = 3y – 5
2x – 3y = -5
Now, let us cube on both sides, we get
(2x – 3y)3 = (-5)3
(2x)3 – (3y)3 – 3 × 2x × 3y (2x – 3y) = -125
8x3 – 27y3 – 18xy (2x – 3y) = -125
Now, substitute the value of 2x – 3y = -5
8x3 – 27y3 – 18xy (-5) = -125
8x3 – 27y3 + 90xy = -125
8x3 – 27y3 + 90xy + 125 = 0
More Solutions:
- Factories the following :
- Factorise 21py2 – 56py
- Factorise 2πr2 – 4πr
- Factorise 25abc2 – 15a2b2c
- Factorise 8×3 – 6×2 + 10x
- Factorise 18p2q2 – 24pq2 + 30p2q
- Factorise 15a (2p – 3q) – 10b (2p – 3q)
- Factorise 6(x + 2y)3 + 8(x +2y)2
- Factorise 10a(2p + q)3 – 15b (2p + q)2 + 35 (2p + q)
- Factorise x2 + xy – x – y
- Factorise 5xy + 7y – 5y2 – 7x