Find the value of A if
(i) sin 3A = cos (A – 6°), where 3A and A – 6° are acute angles
(ii) tan 2A = cot (A – 18°), where 2A and A – 18° are acute angles
(iii) If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A.
Answer :
(i) sin 3A = cos (A – 6°), where 3A and A – 6° are acute angles
sin 3A = cos (A – 6°)
cos (90° – θ) = sin θ
cos (90° – 3A) = cos (A – 6°)
90° – 3A = A – 6°
90° + 6° = A + 3A
⇒ 96° = 4A
A = 96°/4 = 24°
Hence, the value of A is 24°.
(ii) tan 2A = cot (A – 18°)
cot (90° – θ) = tan θ
cot (90° – 2A) = cot (A – 18°)
90° – 2A = A – 18°
90° + 18° = A + 2A
3A = 108°
⇒ A = 108°/3 = 36°
Hence, the value of A is 36°.
(iii) sec 2A = cosec (A – 27°)
cosec (90° – θ) = sec θ
cosec (90° – 2A) = cos (A – 27°)
90° – 2A = A – 27°
90° + 27° = A + 2A
3A = 117°
⇒ A = 117°/3 = 39°
Hence, the value of A is 39°.
More Solutions:
- The value of 1/sin30 – √3/ cos 30 is
- If tan A = √3, then the value of cosec A is
- If sec θ.sin θ = 0, then the value of cos θ is
- If sin alpha = 1/2
- The value of 1-tan² 45/ 1
- If sin alpha = 1/2 and cos beta = 1/2
- If triangle ABC is right angled at C
- The length of the side BC is
- If PQ = 4 cm and PR = 8 cm then angle P is equal to
- sin2 60° – cos2 45° + 3tan2 30°