If tan θ = 5/12, find the value of (cos θ + sin θ)/(cos θ – sin θ).
Answer :
Consider ∆ABC be right angled at B and ∠ACB = θ
tan θ = AB/BC = 5/12
Take AB = 5x then BC = 12x
In right angled ∆ABC,
AC2 = AB2 + BC2
AC2 = (5x)2 + (12x)2
AC2 = 25x2 + 144x2 = 169x2
AC2 = (13x)2
⇒ AC = 13x
In right angled ∆ABC
cos θ = base/hypotenuse
cos θ = BC/AC
cos θ = 12x/13x = 12/13
In right angled ∆ABC
sin θ = perpendicular/hypotenuse
⇒ sin θ = AB/AC
sin θ = 5x/13x = 5/13
(cos θ + sin θ)/(cos θ – sin θ) = [12/13 + 5/13]/ [12/13 – 5/13]
Taking LCM
= [(12 + 5)/13]/[(12 – 5)/13]
= (17/13)/(7/13)
= 17/13 × 13/7
= 17/7
Hence,
(cos θ + sin θ)/(cos θ – sin θ) = 17/7
More Solutions:
- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure