**If tan θ = 5/12, find the value of (cos θ + sin θ)/(cos θ – sin θ).**

**Answer :**

Consider ∆ABC be right angled at B and ∠ACB = θ

tan θ = AB/BC = 5/12

Take AB = 5x then BC = 12x

In right angled ∆ABC,

AC^{2} = AB^{2} + BC^{2}

AC^{2} = (5x)^{2} + (12x)^{2}

AC^{2} = 25x^{2} + 144x^{2} = 169x^{2}

AC^{2} = (13x)^{2}

⇒ AC = 13x

In right angled ∆ABC

cos θ = base/hypotenuse

cos θ = BC/AC

cos θ = 12x/13x = 12/13

In right angled ∆ABC

sin θ = perpendicular/hypotenuse

⇒ sin θ = AB/AC

sin θ = 5x/13x = 5/13

(cos θ + sin θ)/(cos θ – sin θ) = [12/13 + 5/13]/ [12/13 – 5/13]

Taking LCM

= [(12 + 5)/13]/[(12 – 5)/13]

= (17/13)/(7/13)

= 17/13 × 13/7

= 17/7

Hence,

(cos θ + sin θ)/(cos θ – sin θ) = 17/7

**More Solutions:**

- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure