If θ is an acute angle and tan = 8/15, find the value of sec θ + cosec θ.
Answer :
Given tan θ = 8/15
θ is an acute angle
in the figure triangle OMP is a right angled triangle,
∠M = 90o and ∠Q = θ
tanθ = PM/OL = 8/15
PM = 8, OM = 15
But OP2 = OM2 + PM2 using Pythagoras theorem,
= 152 + 82
= 225 + 64
= 289
= 172
OP = 17
sec θ = OP/OM = 17/15
cosec θ = OP/PM = 17/8
Now,
sec θ + cosec θ = (17/15) + (17/8)
= (136 + 255)/120
= 391/120
= 3 (31/120)
More Solutions:
- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure