Find the value of sec θ.

(a) From the figure (1) given below, find the value of sec θ.

Trigonometric Ratios Class 9 ICSE ML Aggarwal img 6

(b) From the figure (2) given below, find the values of:

(i) sin x

(ii) cot x

(iii) cot2 x- cosec2 x

(iv) sec y

(v) tan2 y – 1/cos2 y.

Trigonometric Ratios Class 9 ICSE ML Aggarwal img 7

Answer :

(a) From the figure, Sec θ = AB/BD

But in ∆ADC, ∠D = 90o

AC2 =AD+ DC

⇒ (13)2 =AD+ 25

⇒ AD= 169 -25

= 144

= (12)2

⇒ AD = 12

AB= AD+ BD(in right ∆ABD)

= (12)+ (16)2

= 144 + 256

= 400

= (20)2

⇒ AB = 20

Sec θ = AB/BD

= 20/16

= 5/4

(b) let given ∆ABC

BD = 3, AC = 12, AD = 4

In right angled ∆ABD

AB2 =AD2 + BD2

⇒ AB= (4)2 + (3)2

⇒ AB= 16 + 9

⇒ AB2 = 25

⇒ AB2 = (5)2

⇒ AB = 5

In right angled triangle ACD

AC2 = AD+ CD2

⇒ CD2 = AC2 – AD2

⇒ CD2 = (12)– (4)2

⇒ CD= 144 – 16

⇒ CD2 = 128

⇒ CD = √128

⇒ CD = √64 × 2 CD

= 8√2

(i) sin x = perpendicular/Hypotenuse

= AD/AB

= 4/5

(ii) cot x = Base/Perpendicular

= BD/AD

= ¾

(iii) cot x = Base/Perpendicular

BD/AD

= 3/4

(iv) cosec x = Hypotenuse/Perpendicular

AB/BD

= 5/4

cot2 x – cosec2 x

= (3/4)2 – (5/4)2

= 9/16 – 25/16

(9 -25)/16

= -16/16

= -1

Perpendicular = Hypotenuse/Base (in right angled ∆ACD)

= AD/CD

= 12/(8 √2)

= 3/(2 √2)

cot y = Base/Hypotenuse

= AD/CD

= 4/8 √ 2

= 1/2 √2

cot y = Base/Hypotenuse (in right angled ∆ACD)

= CD/AC

= 8√2/12

= 2√/3

Now tan2 y = 1/cosy

= (1/2√2)2 – 1/(2√2/3)2

= ¼ × – ¼ × 2

= (1/8) – (9/8)

= (1-9)/8

= -8/8

= -1

tany – 1/cosy = –1

More Solutions:

Leave a Comment