(a) From the figure (1) given below, find the value of sec θ.
(b) From the figure (2) given below, find the values of:
(i) sin x
(ii) cot x
(iii) cot2 x- cosec2 x
(iv) sec y
(v) tan2 y – 1/cos2 y.
Answer :
(a) From the figure, Sec θ = AB/BD
But in ∆ADC, ∠D = 90o
AC2 =AD2 + DC2
⇒ (13)2 =AD2 + 25
⇒ AD2 = 169 -25
= 144
= (12)2
⇒ AD = 12
AB2 = AD2 + BD2 (in right ∆ABD)
= (12)2 + (16)2
= 144 + 256
= 400
= (20)2
⇒ AB = 20
Sec θ = AB/BD
= 20/16
= 5/4
(b) let given ∆ABC
BD = 3, AC = 12, AD = 4
In right angled ∆ABD
AB2 =AD2 + BD2
⇒ AB2 = (4)2 + (3)2
⇒ AB2 = 16 + 9
⇒ AB2 = 25
⇒ AB2 = (5)2
⇒ AB = 5
In right angled triangle ACD
AC2 = AD2 + CD2
⇒ CD2 = AC2 – AD2
⇒ CD2 = (12)2 – (4)2
⇒ CD2 = 144 – 16
⇒ CD2 = 128
⇒ CD = √128
⇒ CD = √64 × 2 CD
= 8√2
(i) sin x = perpendicular/Hypotenuse
= AD/AB
= 4/5
(ii) cot x = Base/Perpendicular
= BD/AD
= ¾
(iii) cot x = Base/Perpendicular
BD/AD
= 3/4
(iv) cosec x = Hypotenuse/Perpendicular
AB/BD
= 5/4
cot2 x – cosec2 x
= (3/4)2 – (5/4)2
= 9/16 – 25/16
(9 -25)/16
= -16/16
= -1
Perpendicular = Hypotenuse/Base (in right angled ∆ACD)
= AD/CD
= 12/(8 √2)
= 3/(2 √2)
cot y = Base/Hypotenuse
= AD/CD
= 4/8 √ 2
= 1/2 √2
cot y = Base/Hypotenuse (in right angled ∆ACD)
= CD/AC
= 8√2/12
= 2√/3
Now tan2 y = 1/cos2 y
= (1/2√2)2 – 1/(2√2/3)2
= ¼ × – ¼ × 2
= (1/8) – (9/8)
= (1-9)/8
= -8/8
= -1
tan2 y – 1/cos2 y = –1
More Solutions:
- Find the value of cos θ + tan θ.
- If tan = 4/3, find the value of sin θ + cos θ.
- If cosec = √5 and θ is less than 90°.
- Find cos θ + sin θ in terms of p and q.
- Find the value of sec θ + cosec θ.
- Given A is an acute angle and 13 sin A = 5, Evaluate:
- Given A is an acute angle and cosec A = √2
- If AC = 8 cm and BD = 6 cm, find sin ∠OCD.
- Find the value of (cos θ + sin θ)/(cos θ – sin θ).
- Given 5 cos A – 12 sin A = 0.