If sin θ + cosec θ = 3 1/3, find the value of sin2 θ + cosec2 θ.
Answer :
sin θ + cosec θ = 3 1/3 = 10/3
By squaring on both sides
(sin θ + cosec θ)2 = (10/3)2
Expanding using formula (a + b)2 = a2 + b2 + 2ab
sin2 θ + cosec2 θ + 2 sin θ cosec θ = 100/9
We know that sin θ = 1/cosec θ
sin2 θ + cosec2 θ + (2 sinθ× 1/sin θ) = 100/9
sin2 θ + cosec2 θ + 2 = 100/9
⇒ sin2 θ + cosec2 θ = 100/9 – 2
Taking LCM
sin2 θ + cosec2 θ = (100 – 18)/9 = 82/9
sin2 θ + cosec2 θ = 9 1/9
More Solutions:
- Show that sin (A + B) ≠ sin A + sin B.
- If A = 60° and B = 30°, verify that
- Find the value of θ.
- Find the value of 2 tan2 θ + sin2 θ – 1.
- From the adjoining figure, find
- If 3θ is an acute angle
- If tan 3x = sin 45° cos 45° + sin 30
- If 4 cos2 x° – 1 = 0 and 0 ≤ x ≤ 90, find
- If sin 3x = 1 and 0° ≤ 3x ≤ 90°
- Find cos 2θ, given that θ is acute.