If sin θ + cosec θ = 2, find the value of sin2 θ + cosec2 θ.
Answer :
sin θ + cosec θ = 2
⇒ sin θ + 1/sin θ = 2
sin2 θ + 1 = 2 sin θ
⇒ sin2 θ – 2 sin θ + 1 = 0
(sin θ – 1)2 = 0
⇒ sin θ – 1 = 0
⇒ sin θ = 1
sin2 θ + cosec2 θ = sin2 θ + 1/sin2 θ
= 12 + 1/12
= 1 + 1/1
= 1 + 1
= 2
More Solutions:
- Find the value of sin2 θ + cosec2 θ.
- Find the length of BD.
- Find the values of 7 sin 30° cos 60°
- Find the values of (sin245° + cos245°)/tan260°
- Find the values of (sin30°/cos245°) – 3tan30° + 5cos90°
- Prove That. cos2 30° + sin 30° + tan2 45° = 2 ¼
- If x = 30°, verify that tan 2x = 2tanx/ (1- tan2 x).
- Find the values of: Trigonometric Ratios
- If θ = 30°, verify that
- Find the ratio 2 sin 0: sin 2 0.