(i) If 2θ is an acute angle and 2 sin 2θ = √3, find the value of θ.
(ii) If 20° + x is an acute angle and cos (20° + x) = sin 60°, then find the value of x.
(iii) If 3 sin2 θ = 2 ¼ and θ is less than 90°, find the value of θ.
Answer :
(i) 2θ is an acute angle
2 sin 2θ = √3
sin 2θ = √3/2 = sin 60°
2θ = 60°
θ = 60°/2 = 30°
Hence, θ = 30°
(ii) 20° + x is an acute angle
cos (20° + x) = sin 60°
cos (20° + x) = sin 60° = cos (90° – 60°)
= cos 30°
20° + x = 30°
⇒ x = 30° – 20° = 10°
Hence, x = 100.
(iii) 3 sin2 θ = 2 ¼
θ is less than 90°
sin2 θ = 9/(4 × 3) = ¾
sin θ = √3/2 = sin 60°
θ = 60°
Hence, θ = 60°.
More Solutions:
- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°