#### (i) If 2θ is an acute angle and 2 sin 2θ = √3, find the value of θ.

#### (ii) If 20° + x is an acute angle and cos (20° + x) = sin 60°, then find the value of x.

#### (iii) If 3 sin^{2} θ = 2 ¼ and θ is less than 90°, find the value of θ.

**Answer :**

**(i) **2θ is an acute angle

2 sin 2θ = √3

sin 2θ = √3/2 = sin 60°

2θ = 60°

θ = 60°/2 = 30°

Hence, θ = 30°

**(ii) **20° + x is an acute angle

cos (20° + x) = sin 60°

cos (20° + x) = sin 60° = cos (90° – 60°)

= cos 30°

20° + x = 30°

⇒ x = 30° – 20° = 10°

Hence, x = 10^{0}.

**(iii) **3 sin^{2} θ = 2 ¼

θ is less than 90°

sin^{2} θ = 9/(4 × 3) = ¾

sin θ = √3/2 = sin 60°

θ = 60°

Hence, θ = 60°.

**More Solutions:**

- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°