Find the values of
(i) 7 sin 30° cos 60°
(ii) 3 sin2 45° + 2 cos2 60°
(iii) cos2 45° + sin2 60° + sin2 30°
(iv) cos 90° + cos2 45° sin 30° tan 45°.
Answer :
(i) 7 sin 30° cos 60°
= 7 ×½ ×½
= (7×1×1)/(2×2)
= 7/4
(ii) 3 sin2 45° + 2 cos2 60°
= 3×(1/√2)2 + [2×(1/2)2]
= (3×½) + (2 × ¼)
= 3/2 + ½
= (3 + 1)/2
= 4/2
= 2
(iii) cos2 45° + sin2 60° + sin2 30°
= (1/√2)2 + (√3/2)2 + (1/2)2
= ½ + ¾ + ¼
= (2 + 3 + 1)/4
= 6/4
= 3/2
(iv) cos 90° + cos2 45° sin 30° tan 45°
= 0 + (1/√2)2 × ½ × 1
= ½ × ½ × 1
= ¼
More Solutions:
- Show that sin (A + B) ≠ sin A + sin B.
- If A = 60° and B = 30°, verify that
- Find the value of θ.
- Find the value of 2 tan2 θ + sin2 θ – 1.
- From the adjoining figure, find
- If 3θ is an acute angle
- If tan 3x = sin 45° cos 45° + sin 30
- If 4 cos2 x° – 1 = 0 and 0 ≤ x ≤ 90, find
- If sin 3x = 1 and 0° ≤ 3x ≤ 90°
- Find cos 2θ, given that θ is acute.