Find the values of A and B.

If sin (A + B) = √3/2 = cos (A – B), 0° < A + B ≤ 90° (A > B), find the values of A and B.

Answer :

sin (A + B) = √3/2 = cos (A – B)

sin (A + B) = √3/2

sin 60 = √3/2

sin (A + B) = sin 60°

A + B = 60° …(1)

cos (A – B) = √3/2

cos 30° = √3/2

cos (A – B) = cos 30°

A – B = 30° …(2)

By adding both the equations

A + B + A – B = 60° + 30°

2A = 90°

⇒ A = 90°/2 = 45°

Now substitute the value of A in equation (1)

45° + B = 60°

B = 60° – 45° = 15°

Hence, A = 45° and B = 15°.

More Solutions:

Leave a Comment