(a) From the figure (1) given below, find the values of:
(i) sin ∠ABC
(ii) tan x – cos x + 3 sin x.
(b) From the figure (2) given below, find the values of:
(i) 5 sin x
(ii) 7 tan x
(iii) 5 cos x – 17 sin y – tan x.
Answer :
(a) BC = 12, CD = 9 and BC = 20
In right angled ∆ABC,
AB2 = AC2 + BC2
AC2 = AB2 – BC2
AC2 = (20)2 – (12)2
AC2 = 400 – 144 = 256
So we get
AC2 = (16)2
⇒ AC = 16
In right angled ∆BCD
BD2 = BC2 + CD2
BD2 = 122 + 92
BD2 = 144 + 81 = 225
BD2 = (15)2
⇒ BD = 15
(i) In right angled ∆BCD
sin ∠ABC = perpendicular/hypotenuse
sin ∠ABC = AC/AB = 16/20 = 4/5
(ii) In right angled ∆BCD
tan x = perpendicular/base
tan x = BC/CD = 12/9 = 4/3
In right angled ∆BCD
cos x = base/hypotenuse
cos x = CD/BD = 9/15 = 3/5
In right angled ∆BCD
sin x = perpendicular/hypotenuse
sin x = BC/BD = 12/15 = 4/5
⇒ tan x – cos x + 3 sin x = 4/3 – 3/5 + (3× 4/5)
= 4/3 – 3/5 + 12/5
Taking LCM
= [(4×5) – (3×3) + (12×3)]/15
= (20 – 9 + 36)/15
= (56 – 9)/15
= 27/15
= 3 (2/15)
Hence, tan x – cos x + 3 sin x = 3 2/15.
(b) AC = 17, AB = 25, AD = 15
In right angled ∆ACD
AC2 = AD2 + CD2
(17)2 = (15)2 + (CD)2
CD2 = (17)2 – (15)2
⇒ CD2 = 289 – 225 = 64
CD2 = 82
⇒ CD = 8
In right angled ∆ABD
AB2 = AD2 + BD2
(25)2 = (15)2 + BD2
BD2 = (25)2 – (15)2
⇒ BD2 = 625 – 225 = 400
So we get
BD2 = (20)2
⇒ BD = 20
(i) In right angled ∆ABD
5 sin x = 5 (perpendicular/hypotenuse)
= 5 (AD/AB)
= 5 × 15/25
= 15/5
= 3
(ii) In right angled ∆ABD
7 tan x = 7 (perpendicular/base)
= 7 (AD/AB)
= 7× 15/20
= 7× ¾
= 21/4
= 5 ¼
(iii) In right angled ∆ABD
cos x = base/hypotenuse
cos x = BD/AB = 20/25 = 4/5
In right angled ∆ACD
sin y = perpendicular/hypotenuse
sin y = CD/AC = 8/17
In right angled ∆ABD
tan x = perpendicular/base
tan x = AD/BD = 15/20 = ¾
5 cosx – 17 siny – tanx = (5× 4/5) – (17× 8/17) – ¾
It can be written as
= 4/1 – 8/1 – ¾
Taking LCM
= (16 – 32 – 3)/4
= (16 – 35)/4
= –19/4
= –4 ¾
Hence, 5 cos x – 17 sin y – tan x = – 4 ¾.
More Solutions:
- Find the value of sin2 θ + cosec2 θ.
- Find the length of BD.
- Find the values of 7 sin 30° cos 60°
- Find the values of (sin245° + cos245°)/tan260°
- Find the values of (sin30°/cos245°) – 3tan30° + 5cos90°
- Prove That. cos2 30° + sin 30° + tan2 45° = 2 ¼
- If x = 30°, verify that tan 2x = 2tanx/ (1- tan2 x).
- Find the values of: Trigonometric Ratios
- If θ = 30°, verify that
- Find the ratio 2 sin 0: sin 2 0.