Question 2.
(a) From the figure (1) given below, find the values of:
(i) sin B (i) cos C (iii) sin B + sin C (iv) sin B cos C + sin C cos B
(b) From the figure (2) given below, find the values of:
(i) tan x
(ii) cos y
(iii) cosec2 y – cot2 y
(iv) 5/sin x + 3/sin y – 3 cot y.
Answer :
(a) From right angled triangle ABC,
By Pythagoras theorem, we get
BC2 = AC2 + AB2
⇒ AC2 = BC2 – AB2
⇒ AC2 = (10)2 – (6)2
⇒ AC2 = 100 – 36
⇒ AC2 = 64
⇒ AC2 = 82
⇒ AC = 8
(i) sin B = perpendicular/ hypotenuse
= AC/BC
= 8/10
= 4/5
(ii) cos C = Base/hypotenuse
= AC/BC
= 8/10
= 4/5
(iii) sin B = Perpendicular/hypotenuse
= AC/BC
= 8/10
= 4/5
sin C = perpendicular/hypotenuse
= AB/BC
= 6/10
= 3/5
Now,
sin B + sin C = (4/5) + (3/5)
= (4 + 3)/5
= 7/5
(iv) sin B = 4/5
cos C = 4/5
sin C = perpendicular/ hypotenuse
= AB/BC
= 6/10
= 3/5
cos B = Base/Hypotenuse
= AB/BC
= 6/10
= 3/5
sin B cos C + sin C cos B
= (4/5)×(4/5) + (3/5)×(3/5)
= (26/25) + (9/25)
= (16+9)/25
= 25/25
= 1
(b) From Figure
AC = 13, CD = 5, BC =21,
BD = BC – CD
= 21 – 5
= 16
From right angled ∆ACD,
AC = AD2 + CD2
⇒ AD2 = AC2 – CD2
⇒ AD2 = (13)2 – (5)2
⇒ AD2 = 169 – 25
⇒ AD2 = 144)
⇒ AD2 = (12)2
⇒ AD = 12
From right angled ∆ABD,
AB2 = AD2 + BD2
⇒ AB2 = 400
⇒ AB2 = (20)2
⇒ AB = 20
(i) tan x = perpendicular/Base (in right angled ∆ACD)
=CD/AD
= 5/12
(ii) cos y = Base/Hypotenuse (in right angled ∆ABD)
= BD/AB
= (20)/12 – (5/3)
cot y = Base/Perpendicular (in right ∆ABD)
=BD/AB
= 16/20 = 4/5
(iii) cos y = Hypotenuse/ perpendicular (in right angled ∆ABD)
BD/AB
= 20/12
= 5/3
cot y = Base/Perpendicular (in right ∆ABD)
AB/AD
= 16/12
= 4/3
cosec2 y – cot2 y = (5/3)2 – (4/3)2
= (25/9) – (16/9)
= (25-16)/9
= 9/9
= 1
Therefore,
cosec2 y – cot2 y = 1
(iv) sin x = Perpendicular/Hypotenuse (in right angled ∆ACD)
= AD/AB
= 12/20
= 3/5
cot y = Base/Perpendicular (in right angled ∆ABD)
= BD/AD
= 16/12
= 4/3
(5/sin x) + (3/sin y) – 3cot y
= [5/(5/13)] + 3/(3/5) – (3 × 4/3)
= (5× 13/5) + (3× 5/3) – (3× 4/3)
= (1× 13/1) + (1× 5/1) – (1× 4/1)
= 13 + 5 – 4
= 18 – 4
= 14
Hence,
5/sin x + 3/sin y – 3cot y = 14
More Solutions:
- Find the value of cos θ + tan θ.
- If tan = 4/3, find the value of sin θ + cos θ.
- If cosec = √5 and θ is less than 90°.
- Find cos θ + sin θ in terms of p and q.
- Find the value of sec θ + cosec θ.
- Given A is an acute angle and 13 sin A = 5, Evaluate:
- Given A is an acute angle and cosec A = √2
- If AC = 8 cm and BD = 6 cm, find sin ∠OCD.
- Find the value of (cos θ + sin θ)/(cos θ – sin θ).
- Given 5 cos A – 12 sin A = 0.