Find the values of: sin B

Question 2.

(a) From the figure (1) given below, find the values of:

(i) sin B (i) cos C (iii) sin B + sin C (iv) sin B cos C + sin C cos B

Trigonometric Ratios Class 9 ICSE ML Aggarwal img 3

(b) From the figure (2) given below, find the values of:

(i) tan x

(ii) cos y

(iii) cosec2 y – cot2 y

(iv) 5/sin x + 3/sin y – 3 cot y.

Trigonometric Ratios Class 9 ICSE ML Aggarwal img 4

Answer :

(a) From right angled triangle ABC,

By Pythagoras theorem, we get

BC2 = AC2 + AB2

⇒ AC2 = BC2 – AB2

⇒ AC2 = (10)2 – (6)2

⇒ AC2 = 100 – 36

⇒ AC2 = 64

⇒ AC2 = 82

⇒ AC = 8

(i) sin B = perpendicular/ hypotenuse

= AC/BC

= 8/10

= 4/5

(ii) cos C = Base/hypotenuse

= AC/BC

= 8/10

= 4/5

(iii) sin B = Perpendicular/hypotenuse

= AC/BC

= 8/10

= 4/5

sin C = perpendicular/hypotenuse

= AB/BC

= 6/10

= 3/5

Now,

sin B + sin C = (4/5) + (3/5)

= (4 + 3)/5

= 7/5

(iv) sin B = 4/5

cos C = 4/5

sin C = perpendicular/ hypotenuse

= AB/BC

= 6/10

= 3/5

cos B = Base/Hypotenuse

= AB/BC

= 6/10

= 3/5

sin B cos C + sin C cos B

= (4/5)×(4/5) + (3/5)×(3/5)

= (26/25) + (9/25)

= (16+9)/25

= 25/25

= 1

(b) From Figure

AC = 13, CD = 5, BC =21,

BD = BC – CD

= 21 – 5

= 16

Trigonometric Ratios Class 9 ICSE ML Aggarwal img 5

From right angled ∆ACD,

AC = AD2 + CD2

⇒ AD= AC2 – CD2

⇒ AD= (13)2 – (5)2

⇒ AD= 169 – 25

⇒ AD= 144)

⇒ AD= (12)2

⇒ AD = 12

From right angled ∆ABD,

AB= AD2 + BD2

⇒ AB= 400

⇒ AB= (20)2

⇒ AB = 20

(i) tan x = perpendicular/Base (in right angled ∆ACD)

=CD/AD

= 5/12

(ii) cos y = Base/Hypotenuse (in right angled ∆ABD)

= BD/AB

= (20)/12 – (5/3)

cot y = Base/Perpendicular (in right ∆ABD)

=BD/AB

= 16/20 = 4/5

(iii) cos y = Hypotenuse/ perpendicular (in right angled ∆ABD)

BD/AB

= 20/12

= 5/3

cot y = Base/Perpendicular (in right ∆ABD)

AB/AD

= 16/12

= 4/3

cosec2 y – coty = (5/3)2 – (4/3)2

= (25/9) – (16/9)

= (25-16)/9

= 9/9

= 1

Therefore,

cosec2 y – coty = 1

(iv) sin x = Perpendicular/Hypotenuse (in right angled ∆ACD)

= AD/AB

= 12/20

= 3/5

cot y = Base/Perpendicular (in right angled ∆ABD)

= BD/AD

= 16/12

= 4/3

(5/sin x) + (3/sin y) – 3cot y

= [5/(5/13)] + 3/(3/5) – (3 × 4/3)

= (5× 13/5) + (3× 5/3) – (3× 4/3)

= (1× 13/1) + (1× 5/1) – (1× 4/1)

= 13 + 5 – 4

= 18 – 4

= 14

Hence,

5/sin x + 3/sin y – 3cot y = 14

More Solutions:

Leave a Comment