**Find the values of**

(i) (sin^{2}45° + cos^{2}45°)/tan^{2}60°

(ii) (sin30° – sin90° + 2cos0°)/tan^{2} 60°

(iii) 4/3 tan^{2}30° + sin^{2}60° – 3cos^{2}60° + 3/4 tan^{2}60° – 2tan^{2}45°

**Answer :**

**(iii)** 4/3 tan^{2}30° + sin^{2}60° – 3cos^{2}60° + ¾tan^{2}60° – 2tan^{2}45°

= 4/3(1/√3)^{2} + (√3/2)^{2} – 3(1/2)^{2} + ¾×(√3)^{2} – 2×1^{2}

= (4/3× 1/3) + ¾ – (3 × ¼) + (¾ ×3) – (2×1)

= 4/9 + ¾ – 3/4 + 9/4 – 2

= 4/9 + 9/4 – 2

Taking LCM

= (16 + 81 – 72)/36

= (97 – 72)/36

= 25/36

**More Solutions:**

- Show that sin (A + B) ≠ sin A + sin B.
- If A = 60° and B = 30°, verify that
- Find the value of θ.
- Find the value of 2 tan2 θ + sin2 θ – 1.
- From the adjoining figure, find
- If 3θ is an acute angle
- If tan 3x = sin 45° cos 45° + sin 30
- If 4 cos2 x° – 1 = 0 and 0 ≤ x ≤ 90, find
- If sin 3x = 1 and 0° ≤ 3x ≤ 90°
- Find cos 2θ, given that θ is acute.