Find the values of
(i) (sin30°/cos245°) – 3tan30° + 5cos90°
(ii) 2√2 cos45° cos60° + 2√3 sin30° tan60° – cos30°
(iii) 4/5 tan260° – (2/sin230°) – 3/4 tan230°
Answer :
= 0
(ii) 2√2 cos 45° cos 60° + 2√3 sin 30° tan 60° – cos 0°
= 2√2 × 1/√2 × ½ + 2√3 × ½ × √3 – 1
= 2 × 1/1 × 1/2 + 2 × 3 × ½ – 1
= 1 + 3 – 1
= 3
More Solutions:
- Show that sin (A + B) ≠ sin A + sin B.
- If A = 60° and B = 30°, verify that
- Find the value of θ.
- Find the value of 2 tan2 θ + sin2 θ – 1.
- From the adjoining figure, find
- If 3θ is an acute angle
- If tan 3x = sin 45° cos 45° + sin 30
- If 4 cos2 x° – 1 = 0 and 0 ≤ x ≤ 90, find
- If sin 3x = 1 and 0° ≤ 3x ≤ 90°
- Find cos 2θ, given that θ is acute.