Question 1. (a) From the figure (1) given below, find the values of:
(i) sin θ
(ii) cos θ
(iii) tan θ
(iv) cot θ
(v) sec θ
(vi) cosec θ
(b) From the figure (2) given below, find the values of:
(i) sin
(ii) cos A
(iii) sin2 A + cos2 A
(iv) sec2 A – tan2 A.
Answer :
(a) From right angled triangle OMP,
By Pythagoras theorem,
OP2 = OM2 +MP2
⇒ MP2 = OP2 + OM2
⇒ MP2 = (15)2 – (12)2
⇒ MP2 = 225 – 144
⇒ MP2 = 81
⇒ MP2 = 92
⇒ MP = 9
(i) sin θ = MP/OP
= 9/15
= 3/5
(ii) cos θ = OM/OP
= 12/15
= 4/5
(iii) tan θ = MP/OP
= 9/12
= ¾
(iv) cot θ = OM/MP
= 12/9
= 4/3
(v) sec θ = OP/OM
= 15/12
= 5/4
(vi) cosec θ = OP/MP
= 15/9
= /3
(b) From right angled triangle ABC,
By Pythagoras theorem,
AB2 = AC2 + BC2
⇒ AB2 = (12)2 + (5)2
⇒ AB2 = 144 + 25
⇒ AB2 = 169
⇒ AB2 = 132
⇒ AB = 13
(i) sin A = BC/AB
= 5/13
(ii) cos A = AC/AB
= 12/13
(iii) sin2 A + cos2 A = (BC/AB)2 + (AC/AB)2
= (5/13)2 + (12/13)2
= (25/169) + (144/169)
= (25 + 144)/ 169
= 169/169
= 1
sin2 A + cos2 A = 1
(iv) sec2 A – tan2 A = (AB/AC)2 – (BC/AC)2
= (13/12)2 – (5/12)2
= (169/144) – (25/144)
= (169 – 25)/144
= 144/144
= 1
sec2 A – tan2 A = 1
More Solutions:
- Find the value of cos θ + tan θ.
- If tan = 4/3, find the value of sin θ + cos θ.
- If cosec = √5 and θ is less than 90°.
- Find cos θ + sin θ in terms of p and q.
- Find the value of sec θ + cosec θ.
- Given A is an acute angle and 13 sin A = 5, Evaluate:
- Given A is an acute angle and cosec A = √2
- If AC = 8 cm and BD = 6 cm, find sin ∠OCD.
- Find the value of (cos θ + sin θ)/(cos θ – sin θ).
- Given 5 cos A – 12 sin A = 0.