(a) The figure (i) given below shows a solid of uniform cross-section. Find the volume of the solid. All measurements are in cm and all angles in the figure are right angles.
(b) The figure (ii) given below shows the cross section of a concrete wall to be constructed. It is 2 m wide at the top, 3.5 m wide at the bottom and its
height is 6 m, and its length is 400 m. Calculate (i) The cross-sectional area, and (ii) volume of concrete in the wall.
(c) The figure (iii) given below show the cross section of a swimming pool 10 m broad, 2 m deep at one end and 3 m deep at the other end. Calculate the volume of water it will hold when full, given that its length is 40 m.
Solution:
More Solutions:
- Find the amount of water required to fill the pool.
- Area of a triangle is 30 cm2.
- Area of a parallelogram is 48 cm2.
- If the area of a trapezium is 64 cm2.
- If the lengths of diagonals of a rhombus.
- If the length of a diagonal of a quadrilateral is 10 cm.
- Area of a rhombus is 90 cm2.
- The area of the shaded region is
- The perimeter of the shaded region is
- The area of the shaded region is equal to