From the adjoining figure, find
(i) tan x°
(ii) x
(iii) cos x°
(iv) use sin x° to find y.
Answer :
(i) tan x° = perpendicular/base
= AB/BC
= √3/1
= √3
(ii) tan x° = √3
tan 60° = √3
tan x° = tan 60°
x = 60
(iii) cos x° = cos 60°
cos x° = ½
(iv) sin x° = perpendicular/hypotenuse = AB/AC
Substitute x = 60 from (ii)
sin 60° = √3/y
sin 60° = √3/2
√3/2 = √3/y
y = (√3×2)/√3
y = (2×1)/1 = 2
Hence, y = 2.
More Solutions:
- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°