**From the adjoining figure, find**

(i) tan x°

(ii) x

(iii) cos x°

(iv) use sin x° to find y.

**Answer** :

**(i)** tan x° = perpendicular/base

= AB/BC

= √3/1

= √3

**(ii)** tan x° = √3

tan 60° = √3

tan x° = tan 60°

x = 60

**(iii) **cos x° = cos 60°

cos x° = ½

**(iv)** sin x° = perpendicular/hypotenuse = AB/AC

Substitute x = 60 from (ii)

sin 60° = √3/y

sin 60° = √3/2

√3/2 = √3/y

y = (√3×2)/√3

y = (2×1)/1 = 2

Hence, y = 2.

**More Solutions:**

- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°