Given 4 sin θ = 3 cos θ, find the values of:
(i) sin θ
(ii) cos θ
(iii) cot2 θ – cosec2 θ.
Answer :
4 sin θ = 3 cos θ
⇒ sin θ/cos θ = ¾
⇒ tan θ = ¾
Consider ∆ABC right angled at B and ∠ACB = θ
tan θ = perpendicular/base
¾ = AB/BC
⇒ AB/BC = ¾
Take AB = 3x then BC = 4x
In right angled ∆ABC
AC2 = AB2 + BC2
AC2 = (3x)2 + (4x)2
AC2 = 9x2 + 16x2 = 25x2
AC2 = (5x)2
⇒ AC = 5x
(i) In right angled ∆ABC
sin θ = perpendicular/hypotenuse
sin θ = AB/AC = 3x/5x = 3/5
(ii) In right angled ∆ABC
cos θ = base/hypotenuse
cos θ = BC/AC = 4x/5x = 4/5
(iii) In right angled ∆ABC
cot θ = base/perpendicular
cot θ = BC/AB = 4x/3x = 4/3
In right angled ∆ABC
cosec θ = hypotenuse/perpendicular
cosec θ = AC/AB = 5x/3x = 5/3
cot2 θ – cosec2 θ = (4/3)2 – (5/3)2
= 16/9 – 25/9
= (16 – 25)/9
= -9/9
= -1
Hence, cot2 θ – cosec2 θ = -1.
More Solutions:
- Find the value of sin2 θ + cosec2 θ.
- Find the length of BD.
- Find the values of 7 sin 30° cos 60°
- Find the values of (sin245° + cos245°)/tan260°
- Find the values of (sin30°/cos245°) – 3tan30° + 5cos90°
- Prove That. cos2 30° + sin 30° + tan2 45° = 2 ¼
- If x = 30°, verify that tan 2x = 2tanx/ (1- tan2 x).
- Find the values of: Trigonometric Ratios
- If θ = 30°, verify that
- Find the ratio 2 sin 0: sin 2 0.