Given 5 cos A – 12 sin A = 0, find the value of (sin A + cos A)/ (2 cos A – sin A).
Answer :
5 cos A – 12 sin A = 0
We can write it as
5 cos A = 12 sin A
So we get
sin A/cos A = 5/12
sin A/ cos A = tan A
tan A = 5/12
Consider ∆ABC right angled at B and ∠A is acute angle
tan A = BC/AB = 5/12
Take BC = 5x then AB = 12x
In right angled ∆ABC
AC2 = BC2 + AB2
AC2 = (5x)2 + (12x)2
⇒ AC2 = 25x2 + 144x2 = 169x2
AC2 = (13x)2
⇒ AC = 13x
In right angled ∆ABC
sin A = perpendicular/hypotenuse
sin A = BC/AC = 5x/13x = 5/13
In right angled ∆ABC
cos A = base/hypotenuse
⇒ cos A = AB/AC = 12x/13x = 12/13
(sin A + cos A)/(2 cos A – sin A) = [(5/13) + (12/13)]/[(2× 12/13) – 5/13]
= [(5+12)/13]/[24/13 – 5/13]
= [(5+12)/13]/[(24 – 5)/13]
= (17/13)/(19/13)
= 17/13 × 13/19
= 17/19
Hence, (sin A + cos A)/ (2 cos A – sin A) = 17/19
More Solutions:
- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure