Given A is an acute angle and 13 sin A = 5, Evaluate:
(5 sin A – 2 cos A)/ tan A.
Answer :
Let triangle ABC be a right angled triangle at B and A is an acute angle
Given that 13 sin A = 5
Sin A = 5/13
AB/AC = 5/13
Let AB = 5x
AC = 13 x
In right angled triangle ABC,
AC2 = AB2 + BC2
⇒ BC2 = AC2 – BC2
⇒ BC2 = (13x)2 – (5x)2
⇒ BC2 = 169x2 – 25x2
⇒ BC2 = 144x2
⇒ BC = 12x
⇒ sin A = 5/13
⇒ cos A = base/ hypotenuse
= BC/AC
= 12x/ 13x
= 12/13
Tan A = perpendicular/ base
= AB/BC
= 5x/ 12x
= 5/ 12
(5 sin A – 2 cos A)/tan A = [(5) (5/13) – (2) (12/13)]/(5/12)
= (1/13)/(5/12)
= 12/65
Hence,
(5 sin A – 2 cos A)/tan A = 12/65
More Solutions:
- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure