Given A is an acute angle and cosec A = √2, find the value of
(2 sin2 A + 3 cot2 A)/ (tan2 A – cos2 A).
Answer :
Let triangle ABC be a right angled at B and A is a acute angle.
Given that cosec A = √2
AC/BC = √2/1
Let AC = √2x
Then BC = x
In right angled triangle ABC
AC2 = AB2 + BC2
⇒ (√2x)2 = AB2 + x2
⇒ AB2 = 2x2 – x2
⇒ AB = x
sin A = perpendicular/ hypotenuse
= BC/AC
= 1/ √2
cot A = base/ perpendicular
= x/x
= 1
Tan A = perpendicular/ base
= BC/AB
= x/x
= 1
cos A = base/ hypotenuse
= AB/AC
= x/ √2x
= 1/√2
2 sin2A + 3 cot2A/(tan2A – cos2A) = 8
More Solutions:
- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure