If 2a + 3b = 7 and ab = 2, find 4a2 + 9b2.
Answer :
We know that
(2a + 3b)2 = 4a2 + 9b2 + 12ab
It can be written as
4a2 + 9b2 = (2a + 3b)2 – 12ab
It is given that
2a + 3b = 7
ab = 2
Substituting the values
4a2 + 9b2 = 72 – 12 × 2
By further calculation
= 49 – 24
= 25
More Solutions:
- If x + y = 6 and x – y = 4, find
- If x – 3 = 1/x, find the value of x2 + 1/x2.
- If x + y = 8 and xy = 3 ¾, find the values of
- Find the value of 2 (x + y)2 + (x – y)2.
- If a – b = 3 and ab = 4, find a3 – b3.
- Find the value of 8a3 – 27b3.
- If x + 1/x = 4, find the values of
- If x – 1/x = 5, find the value of x4 + 1/x4.
- If x – 1/x = √5, find the values of
- If x + 1/x = 6, find