If 3θ is an acute angle, solve the following equations for θ:
(i) 2 sin 3θ = √3
(ii) tan 3θ = 1.
Answer :
(i) 2 sin 3θ = √3
sin 3θ = √3/2
sin 60° = √3/2
sin 3θ = sin 60°
⇒ 3θ = 60°
θ = 60/3 = 20°
(ii) tan 3θ = 1
tan 45° = 1
tan 3θ = tan 45°
3θ = 45°
⇒ θ = 15°
More Solutions:
- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°